## Introduction

The purpose of this document is to outline the requirements of the new curriculum (2014) and more importantly, the needs of our pupils. This policy aims to explain (with examples) the core understanding and mathematical principles that we follow in our lessons, as well as the progression expect from year to year. In this way we seek to ensure consistency in the teaching and learning of mathematics in St Buryan.

The focus of this policy is the calculation of the four mathematical operations (,,$+- x$ and $\div$ ), whether through written or mental strategies.
The maths curriculum has three parts: Fluency, Problem Solving and Reasoning; in our lessons we supplement our text books with a range of teacher, or child, led activities to ensure that we balance a rigorous structure with the freedom required for mathematical reasoning and investigation.

## The overall aims of this policy are that, when children leave primary school they:

- have a secure knowledge of number facts and a good understanding of the four operations supported by a fluency and understanding of the fundamentals of mathematics
- know the best strategy to use, estimate before calculating, systematically break problems down into a series of simpler steps with perseverance and use estimation and rounding to check that an answer is reasonable
- are able to use this knowledge and understanding to carry out calculations mentally, solve problems of increasing complexity and develop an ability to recall and apply knowledge rapidly
- make use of diagrams and informal notes and jottings to help record steps and partial answers when using mental methods
- have an efficient, reliable, compact written method of calculation for each operation, which they can apply with confidence when undertaking calculations
- be able to explain their strategies to calculate and, using spoken language, give mathematical justification, argument or proof.

This policy should be read alongside the excellent document shared by the White Rose Maths Hub which can be found on our website, this gives examples of the way in which we at St Buryan might teach and answer actual questions. We seek to use a mix of concrete, pictorial and abstract (i.e. number) methods to make sure every child understands the different ways how the same question might be solved.

## KEY STAGE 1

Children in Years 1 and 2 will be given a really solid foundation in the basic building blocks of mental and written arithmetic. Through being taught place value, children will develop an understanding of how numbers work, so that they are confident with 2-digit numbers and beginning to read and say numbers above 100 .

Addition and Subtraction: A focus on number bonds, first via practical hands-on experiences and subsequently using memorisation techniques, enables a good grounding in these crucial facts, and ensures that all children leave Year 2 knowing the pairs of numbers which make all the numbers up to 10 at least. Children will also have experienced and been taught pairs to 20. Children's knowledge of number facts enables them to add several 1-digit numbers, and to add/subtract a 1-digit number to/from a 2-digit number. Another important conceptual tool is the ability to add/subtract 1 or 10 , and to understand which digit changes and why. This understanding is extended to enable children to add and subtract multiples of 10 to and from any 2-digit number. The most important application of this knowledge is the ability to add or subtract any pair of 2-digit numbers by counting on or back in 10s and 1s. Children may extend this to adding by partitioning numbers into 10 s and 1 s .

Multiplication and Division: Children will be taught to count in $2 \mathrm{~s}, 3 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s , and will relate this skill to repeated addition. Children will meet and begin to learn the associated $\times 2, \times 3, \times 5$ and $\times 10$ tables. Engaging in a practical way with the concept of repeated addition and the use of arrays enables children to develop a preliminary understanding of multiplication, and asking them to consider how many groups of a given number make a total will introduce them to the idea of division. Children will also be taught to double and halve numbers, and will thus experience scaling up or down as a further aspect of multiplication and division.

Fractions: Fractions will be introduced as numbers and as operators, specifically in relation to halves, quarters and thirds.

## Year 1

|  | Mental calculation | Written calculation | Default for ALL children |
| :--- | :--- | :--- | :--- |
| $\boldsymbol{Y 1}$ | Number bonds ('story' of 5, 6, 7, 8, 9 and 10) <br> Count on in 1s from a given 2-digit number <br> Add two 1-digit numbers <br> Add three 1-digit numbers, spotting doubles or pairs to 10 <br> Count on in 10s from any given 2-digit number <br> Add 10 to any given 2-digit number <br> Use number facts to add 1-digit numbers to <br> 2-digit numbers <br> e.g. Use 4 + 3 to work out 24 + 3, 34 +3 <br> Add by putting the larger number first | It is our view that children in <br> Reception, Year 1 and Year 2 have <br> the opportunity to gain a firm <br> understanding of all aspects of <br> maths through games, handling and <br> drawing. This may mean they count <br> 'things', use shapes, cards or cubes. <br> (sometimes called the concrete / <br> pictorial / abstract approach) | Count in 1s <br> Count in 10s <br> Count on 1 from any given 2-digit number |


| Y1 | Number bonds ('story' of 5, 6, 7, 8, 9 and 10) <br> Count back in 1 s from a given 2-digit number <br> Subtract one 1-digit number from another <br> Count back in 10s from any given 2-digit number <br> Subtract 10 from any given 2-digit number <br> Use number facts to subtract 1-digit numbers from 2-digit numbers. e.g. Use 7-2 to work out 27-2, 37-2 | See box above | Pairs with a total of 10 <br> Count back in 1 s from 20 to 0 <br> Count back in 10s from 100 to 0 <br> Count back 1 from any given 2-digit number |
| :---: | :---: | :---: | :---: |
| $\begin{gathered} Y 1 \\ x \end{gathered}$ | Begin to count in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s <br> Begin to say what three 5 s are by counting in 5 s , or what four 2 s are by counting in 2s, etc. <br> Double numbers to 10 |  | Begin to count in 2s and 10s <br> Double numbers to 5 using fingers |
| $\begin{gathered} Y 1 \\ \div \end{gathered}$ | Begin to count in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s <br> Find half of even numbers to 12 and know it is hard to halve odd numbers <br> Find half of even numbers by sharing <br> Begin to use visual and concrete arrays or <br> 'sets of' to find how many sets of a small number make a larger number |  | Begin to count in 2 s and 10 s <br> Find half of even numbers by sharing |
| Year 2 |  |  |  |
|  | Mental calculation | Written calculation | Default for ALL children |
| $\begin{gathered} Y 2 \\ + \end{gathered}$ | Number bonds - know all the pairs of numbers which make all the numbers to 12 , and pairs with a total of 20 <br> Count on in 1s and 10s from any given 2-digit number <br> Add two or three 1-digit numbers <br> Add a 1-digit number to any 2-digit number using number facts, including bridging multiples of 10 <br> e.g. $45+4$ or $38+7$ <br> Add 10 and small multiples of 10 to any given 2-digit number <br> Add any pair of 2-digit numbers | As for Year 1 | Know pairs of numbers which make each total up to 10 Add two 1-digit numbers <br> Add a 1-digit number to a 2-digit number by counting on in 1s <br> Add 10 and small multiples of 10 to a 2-digit number by counting on in 10s |

Number bonds - know all the pairs of numbers which make all the numbers to 12
Count back in 1s and 10s from any given 2-digit number
Subtract a 1-digit number from any 2-digit number using number facts, including bridging multiples of 10

$$
\text { e.g. } 56-3 \text { or } 53-5
$$

Subtract 10 and small multiples of 10 from any given 2-digit number Subtract any pair of 2-digit numbers by counting back in 10 s and 1 s or by counting up
Count in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s
Begin to count in 3s
Begin to understand that multiplication is repeated addition and to use arrays
e.g. $3 \times 4$ is three rows of 4 dots

Begin to learn the $\times 2, \times 3, \times 5$ and $\times 10$ tables, seeing these as 'lots of' e.g. 5 lots of 2,6 lots of 2,7 lots of 2

Double numbers up to 20
Begin to double multiples of 5 to 100
Begin to double 2-digit numbers less than 50 with 1 s digits of $1,2,3,4$ or 5
Count in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s
Begin to count in 3s
Using fingers, say where a given number is in the 2 s , 5 s or 10 s count e.g. 8 is the fourth number when I count in 2 s

Relate division to grouping
e.g. How many groups of 5 in 15 ?

Halve numbers to 20
Begin to halve numbers to 40 and multiples of 10 to 100
Find $1 / 2,1 / 3,1 / 4$ and $3 / 4$ of a quantity of objects and of amounts (whole number answers)

As for Year 1
As or Year 1

Know pairs of numbers which make each total up to 10 Subtract a 1-digit number from a 2-digit number by counting back in 1 s
Subtract 10 and small multiples of 10 from a
2 -digit number by counting back in 10 s

Count in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s
Begin to use and understand simple arrays
e.g. $2 \times 4$ is two lots of four

Double numbers up to 10
Double multiples of 10 to 50

## Count in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s

Say how many rows in a given array
e.g. How many rows of 5 are in an array of $3 \times 5$ ?
Halve numbers to 12
Find $1 / 2$ of amounts

## LOWER KEY STAGE 2

In Lower Key Stage 2, children build on the concrete and conceptual understandings they have gained in Key Stage 1 to develop a real mathematical understanding of the four operations, in particular developing arithmetical competence in relation to larger numbers.

Addition and subtraction: Children are taught to use place value and number facts to add and subtract numbers mentally and they will develop a range of strategies to enable them to discard the 'counting in 1s' or fingers-based methods of Key Stage 1. In particular, children will learn to add and subtract multiples and near multiples of 10, 100 and 1000, and will become fluent in complementary addition as an accurate means of achieving fast and accurate answers to 3-digit subtractions. Standard written methods for adding larger numbers are taught, learned and consolidated, and written column subtraction is also introduced.

Multiplication and division: This key stage is also the period during which all the multiplication and division facts are thoroughly memorised, including all facts up to $12 \times 12$. Efficient written methods for multiplying or dividing a 2 -digit or 3-digit number by a 1-digit number are taught, as are mental strategies for multiplication or division with large but 'friendly' numbers, e.g. when dividing by 5 or multiplying by 20 .

Fractions and decimals: Children will develop their understanding of fractions, learning to reduce a fraction to its simplest form, as well as finding non-unit fractions of amounts and quantities. The concept of a decimal number is introduced and children consolidate a firm understanding of 1-place decimals, multiplying and dividing whole numbers by 10 and 100 .

## Year 3

|  | Mental calculation | Written calculation | Default for ALL children |
| :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { Y3 } \\ + \end{gathered}$ | Know pairs with each total to 20 $\text { e.g. } 2+6=8,12+6=18,7+8=15$ <br> Know pairs of multiples of 10 with a total of 100 <br> Add any two 2-digit numbers by counting on in 10s and 1s or by using partitioning <br> Add multiples and near multiples of 10 and 100 <br> Perform place-value additions without a struggle $\text { e.g. } 300+8+50=358$ <br> Use place value and number facts to add a <br> 1-digit or 2-digit number to a 3-digit number $\text { e.g. } 104+56 \text { is } 160 \text { since } 104+50=154 \text { and } 6+4=10$ $676+8 \text { is } 684 \text { since } 8=4+4 \text { and } 76+4+4=84$ <br> Add pairs of 'friendly' 3-digit numbers $\text { e.g. } 320+450$ <br> Begin to add amounts of money using partitioning | Use expanded column addition to add two or three 3-digit numbers or three 2-digit numbers <br> Begin to use compact column addition to add numbers with 3 digits <br> Begin to add like fractions $\text { e.g. } 3 / 8+1 / 8+1 / 8$ <br> Recognise fractions that add to 1 <br> e.g. $1 / 4+3 / 4$ <br> e.g. $3 / 5+2 / 5$ | Know pairs of numbers which make each total up to 10, and which total 20 <br> Add two 2-digit numbers by counting on in 10s and 1s <br> e.g. $56+35$ is $56+30$ and then add the 5 <br> Understand simple place-value additions $\text { e.g. } 200+40+5=245$ <br> Use place value to add multiples of 10 or 100 |

Know pairs with each total to 20

$$
\text { e.g. } 8-2=6 \text { or } 18-6=12 \text { or } 15-8=7
$$

Subtract any two 2-digit numbers
Perform place-value subtractions without a struggle e.g. $536-30=506$
Subtract 2-digit numbers from numbers $>100$ by counting up
e.g. $143-76$ is done by starting at 76 . Then add 4 (80), then add 20 (100), then add 43, making the difference a total of 67

Subtract multiples and near multiples of 10 and 100
Subtract, when appropriate, by counting back or taking away, using place value and number facts. Find change from £1, £5 and £10

Know by heart all the multiplication facts in the $\times 2, \times 3, \times 4, \times 5, \times 8$ and $\times 10$ tables. Multiply whole numbers by 10 and 100
Recognise that multiplication is commutative
Use place value and number facts in mental multiplication e.g. $30 \times 5$ is $15 \times$
10 Partition teen numbers to multiply by a 1 -digit number e.g. $3 \times 14$ as $3 \times$
10 and $3 \times 4$
Double numbers up to 50
Know by heart all the division facts derived from the $\times 2, \times 3, \times 4, \times 5, \times 8$ and $\times 10$ tables Divide whole numbers by 10 or 100
Recognise that division is not commutative
Use number facts in mental division e.g. $84 \div 4$ is half of 42
Divide larger numbers mentally by subtracting the 10th multiple as appropriate,
including those with remainders
e.g. $57 \div 3$ is $10+9$ as $10 \times 3=30$ and $9 \times 3=27$

Halve even numbers to 100 , halve odd numbers to 20

Use counting up as an informal
written strategy for subtracting pairs
of 3-digit numbers

$$
\text { e.g. } 423-357
$$

Begin to subtract like fractions

$$
\text { e.g. } 7 / 8-3 / 8
$$

Use partitioning (grid multiplication)
to multiply
2-digit and 3-digit numbers by 'friendly' 1-digit numbers

Perform divisions just above the 10th multiple using horizontal or vertical jottings and understanding how to give a remainder as a whole number
Find unit fractions of quantities and begin to find non-unit fractions of quantities

Know pairs of numbers which make each total up to 10, and which total 20
Count up to subtract 2-digit numbers

$$
\text { e.g. } 72-47
$$

Subtract multiples of 5 from 100 by counting up

$$
\text { e.g. } 100-35
$$

Subtract multiples of 10 and 100

Know by heart the $\times 2, \times 3, \times 5$ and $\times 10$ tables
Double given tables facts to get others Double numbers up to 25 and multiples of 5 to 50

Know by heart the division facts derived from the $\times 2, \times 3, \times 5$ and $\times 10$ tables Halve even numbers up to 50 and multiples of 10 to 100
Perform divisions within the tables including those with remainders

$$
\text { e.g. } 38 \div 5
$$

## Year 4

## Mental calculation

Add any two 2-digit numbers by partitioning or counting on
Know by heart/quickly derive number bonds to 100 and to $£ 1$
Add to the next 100, $£ 1$ and whole number

Written calculation
Add like fractions

$$
\text { e.g. } 3 / 5+4 / 5=7 / 5=12 / 5
$$

Be confident with fractions that add to 1 and fraction complements to 1

Default for ALL children
Add any 2-digit numbers by partitioning or counting on
Number bonds to 20
Know pairs of multiples of 10 with a total of 100

$$
\text { e.g. } 234+66=300 \text { and } 3 \cdot 4+0 \cdot 6=4
$$

Perform place-value additions without a struggle

$$
\text { e.g. } 300+8+50+4000=4358
$$

Add multiples and near multiples of 10,100 and 1000
Add $£ 1,10$ p, 1p to amounts of money
Use place value and number facts to add 1-, 2-, 3- and 4-digit numbers where a mental calculation is appropriate

$$
\text { e.g. } 4004+156 \text { by knowing that } 6+4=10 \text { and that } 4004+
$$

$$
150=4154 \text { so the total is } 4160
$$

## Subtract any two 2-digit numbers

Know by heart/quickly derive number bonds to 100
Perform place-value subtractions without a struggle

$$
\text { e.g. } 4736-706=4030
$$

Subtract multiples and near multiples of 10,100,1000, £1 and 10p
Subtract multiples of 0.1
Subtract by counting up
e.g. $503-368$ is done by adding
$368+2+30+100+3$ (so we added 135)
Subtract, when appropriate, by counting back or taking away, using place value and number facts
Subtract $£ 1,10$ p, 1 p from amounts of money
Find change from £10, $£ 20$ and $£ 50$
Know by heart all the multiplication facts up to $12 \times 12$
Recognise factors up to 12 of 2-digit numbers
Multiply whole numbers and 1-place decimals by 10, 100, 1000
Multiply multiples of 10,100 and 1000 by 1 -digit numbers
e.g. $300 \times 6$ or $4000 \times 8$

Use understanding of place value and number facts in mental multiplication
e.g. $36 \times 5$ is half of $36 \times 10$ or $50 \times 60=3000$

Partition 2-digit numbers to multiply by a 1-digit number mentally
e.g. ${ }^{2} / 3+{ }_{3}=1$ Column addition for 3-digit and 4-digit numbers

5347
2286
$+1495$
12 |
q | 28

Use expanded column subtraction for 3-
and
4-digit numbers
Use complementary addition to subtract amounts of money, and for subtractions where the larger number is a near multiple of 1000 or 100
e.g. 2002-1865

Subtract like fractions
e.g. $4 / 5-3 / 5=1 / 5$

Use fractions that add to 1 to find fraction complements to 1
e.g. $1-2 / 3=1 / 3$

Use a vertical written method to multiply a 1-digit number by a 3-digit number (ladder method)
Use an efficient written method to multiply a

2-digit number by a number between 10 and 20 by partitioning (grid method)

Add 'friendly' larger numbers using knowledge of place value and number facts
Use expanded column addition to add 3-digit numbers

Use counting up with confidence to solve most subtractions, including finding complements to multiples of 100
e.g. 512-287
e.g. $67+_{-}=100$

Know by heart multiplication tables up to $10 \times 10$
Multiply whole numbers by 10 and 100
Use the grid method to multiply a 2-digit or a
3-digit number by a number $\leq 6$

| e.g. $4 \times 24$ as $4 \times 20$ and $4 \times 4$ <br> Multiply near multiples by rounding $\text { e.g. } 33 \times 19 \text { as }(33 \times 20)-33$ <br> Find doubles to double 100 and beyond using partitioning Begin to double amounts of money <br> e.g. $£ 35 \cdot 60$ doubled is $£ 71 \cdot 20$ |  |  |
| :---: | :---: | :---: |
| Know by heart all the division facts up to $144 \div 12$ <br> Divide whole numbers by 10,100 , to give whole number answers or answers with 1 decimal place <br> Divide multiples of 100 by 1 -digit numbers using division facts e.g. $3200 \div 8=400$ <br> Use place value and number facts in mental division <br> e.g. $245 \div 20$ is half of $245 \div 10$ <br> Divide larger numbers mentally by subtracting the 10th or 20th multiple as appropriate $\begin{aligned} & \text { e.g. } 156 \div 6 \text { is } 20+6 \text { as } 20 \times 6=120 \text { and } \\ & 6 \times 6=36 \end{aligned}$ <br> Find halves of even numbers to 200 and beyond using partitioning Begin to halve amounts of money <br> e.g. half of $£ 52.40$ is $£ 26.20$ | Use a written method to divide a 2-digit or a <br> 3-digit number by a 1-digit number <br> Give remainders as whole numbers <br> Begin to reduce fractions to their simplest forms <br> Find unit and non-unit fractions of larger amounts | Know by heart all the division facts up to $100 \div 10$ <br> Divide whole numbers by 10 and 100 to give whole number answers or answers with 1 decimal place <br> Perform divisions just above the 10th multiple using the written layout and understanding how to give a remainder as a whole number <br> Find unit fractions of amounts |

## UPPER KEY STAGE 2

Children move on from dealing mainly with whole numbers to performing arithmetic operations with both decimals and fractions.

Addition and subtraction: Children will consolidate their use of written procedures in adding and subtracting whole numbers with up to 6 digits and also decimal numbers with up to 2 decimal places. Mental strategies for adding and subtracting increasingly large numbers will also be taught. These will draw upon children's robust understanding of place value and knowledge of number facts. Negative numbers will be added and subtracted.

## Multiplication and division: Efficient and flexible

 strategies for mental multiplication and division are taught and practised, so that children can perform appropriate calculations even when the numbers are large, such as $40000 \times 6$ or $40000 \div 8$. In addition, it is in Years 5 and 6 that children extend their knowledge and confidence in using written methods for multiplication and division.Fractions, decimals, percentages and ratio: Fractions and decimals are also added, subtracted, divided and multiplied, within the bounds of children's understanding of these more complicated numbers. Children will also calculate simple percentages and ratios.

## Year 5

| Year 5 |  |  |  |
| :---: | :---: | :---: | :---: |
|  | Mental calculation | Written calculation | Default for ALL children |
| $\begin{gathered} Y 5 \\ + \end{gathered}$ | Know number bonds to 1 and to the next whole number <br> Add to the next 10 from a decimal number $\text { e.g. } 13 \cdot 6+6 \cdot 4=20$ <br> Add numbers with 2 significant digits only, using mental strategies e.g. $3.4+4.8$ or e.g. $23000+47000$ <br> Add 1- or 2-digit multiples of 10, 100, 1000, 10000 and 100000 e.g. $8000+7000$ or e.g. $600000+700000$ <br> Add near multiples of $10,100,1000,10000$ and 100000 to other numbers e.g. $82472+30004$ <br> Add decimal numbers which are near multiples of 1 or 10 , including money <br> e.g. $6 \cdot 34+1.99$ or e.g. $£ 34 \cdot 59+£ 19.95$ <br> Use place value and number facts to add two or more 'friendly' numbers, including money and decimals <br> e.g. $3+8+6+4+7$ and $0.6+0.7+0.4$ and $2056+44$ | Use column addition to add two or three whole numbers with up to 5 digits <br> Use column addition to add any pair of 2-place decimal numbers, including amounts of money <br> Begin to add related fractions using equivalences $\text { e.g. } 1 / 2+1 / 6=3 / 6+1 / 6$ <br> Choose the most efficient method in any given situation | Add numbers with only 2 digits which are not zeros $\text { e.g. } 3 \cdot 4+5 \cdot 8$ <br> Derive swiftly and without any difficulty number bonds to 100 <br> Add 'friendly' large numbers using knowledge of place value and number facts <br> Use expanded column addition to add pairs of 4- and 5-digit numbers |
| Y5 - | Subtract numbers with 2 significant digits only, using mental strategies e.g. $6.2-4.5$ or e.g. $72000-47000$ <br> Subtract 1- or 2-digit multiples of 10, 100, 1000, 10000 and 100000 e.g. 8000-3000 and 60000-200000 <br> Subtract 1- or 2-digit near multiples of 10, 100, 1000, 10000 and 100000 from other numbers $\text { e.g. } 82472-30004$ <br> Subtract decimal numbers which are near multiples of 1 or 10, including money $\text { e.g. } 6 \cdot 34-1.99 \text { and } £ 34.59-£ 19.95$ <br> Use counting up subtraction, with knowledge of number bonds to 10,100 or $£ 1$, as a strategy to perform mental subtraction e.g. $£ 10$ - £3.45 or e.g. 1000-782 <br> Recognise fraction complements to 1 and to the next whole number e.g. $12 / 5+3 / 5=2$ | Use compact or expanded column subtraction to subtract numbers with up to 5 digits Use complementary addition for subtractions where the larger number is a multiple or near multiple of 1000 Use complementary addition for subtractions of decimal numbers with up to 2 places, including amounts of money <br> Begin to subtract related fractions using equivalences $\text { e.g. } 1 / 2-1 / 6=2 / 6$ <br> Choose the most efficient method in any given situation | Derive swiftly and without difficulty number bonds to 100 <br> Use counting up with confidence to solve most subtractions, including finding complements to multiples of 1000 $\text { e.g. } 3000-2387$ |

Know by heart all the multiplication facts up to $12 \times 12$
Multiply whole numbers and 1- and 2-place decimals by 10, 100, 1000, 10000

Use knowledge of factors and multiples in multiplication

$$
\begin{aligned}
& \text { e.g. } 43 \times 6 \text { is double } 43 \times 3 \\
& \text { e.g. } 28 \times 50 \text { is } 1 / 2 \text { of } 28 \times 100=1400
\end{aligned}
$$

Use knowledge of place value and rounding in mental multiplication e.g. $67 \times 199$ as $67 \times 200-67$

Use doubling and halving as a strategy in mental multiplication e.g. $58 \times 5$ is half of $58 \times 10$ and $.34 \times 4$ is 34 doubled twice
Partition 2-digit numbers, including decimals, to multiply by a 1-digit number mentally

$$
\text { e.g. } 6 \times 27 \text { as } 6 \times 20(120) \text { plus } 6 \times 7 \text { (42) }
$$

Double amounts of money by partitioning
e.g. $£ 37.45$ doubled is $£ 37$ doubled ( $£ 74$ ) plus 45 p doubled
(90p) giving a total of £74.90
Know by heart all the division facts up to $144 \div 12$
Divide whole numbers by $10,100,1000,10000$ to give whole number answers or answers with 1, 2 or 3 decimal places
Use doubling and halving as mental division strategies

$$
\text { e.g. } 34 \div 5 \text { is }(34 \div 10) \times 2
$$

Use knowledge of multiples and factors, as well as tests for divisibility, in mental division
e.g. $246 \div 6$ is $123 \div 3$ and that 525 divides by 25 and by 3 Halve amounts of money by partitioning

$$
\text { e.g. } 1 / 2 \text { of } £ 75 \cdot 40=1 / 2 \text { of } £ 75(£ 37 \cdot 50) \text { plus half of } 40 \text { p (20p) }
$$ which is $£ 37.70$

Divide larger numbers mentally by subtracting the 10th or 100th multiple as appropriate e.g. $96 \div 6$ is $10+6$, as $10 \times 6=60$ e.g. $312 \div 3$ is $100+4$ as $100 \times 3=300$ and $4 \times 3=12$

Know tests for divisibility by 2, 3, 4, 5, 6, 9 and 25
Know square numbers and cube numbers
Reduce fractions to their simplest form

Use short multiplication to multiply a 1-digit number by a number with up to 4 digits
Use long multiplication to multiply 3digit and
4-digit numbers by a number between 11 and 20
Choose the most efficient method in any given situation
Find simple percentages of amounts

$$
\text { e.g. } 10 \%, 5 \%, 20 \%, 15 \% \text { and }
$$

50\%
Begin to multiply fractions and mixed numbers by whole numbers $\leq 10$

$$
\text { e.g. } 4 x^{2 / 3}=8 / 3=2^{2 / 3}
$$

Use short division to divide a number with up to 4 digits by a number $\leq 12$ Give remainders as whole numbers or as fractions
Find non-unit fractions of large amounts
Turn improper fractions into mixed numbers and vice versa
Choose the most efficient method in any given situation

Know multiplication tables to $11 \times 11$
Multiply whole numbers and 1-place decimals by 10, 100 and 1000
Use knowledge of factors as aids to mental multiplication

$$
\begin{aligned}
& \text { e.g. } 13 \times 6 \text { is double } 13 \times 3 \\
& \text { e.g. } 23 \times 5 \text { is } 1 / 2 \text { of } 23 \times 10
\end{aligned}
$$

Use the grid method to multiply numbers with up to 4 digits by 1 -digit numbers
Use the grid method to multiply 2-digit numbers by 2digit numbers

## Know by heart division facts up to $121 \div 11$

Divide whole numbers by 10,100 or 1000 to give answers with up to 1 decimal place
Use doubling and halving as mental division strategies
Use an efficient written method to divide numbers $\leq$ 1000 by 1 -digit numbers
Find unit fractions of 2 - and 3 -digit numbers

## Year 6



Add negative numbers in a context such as temperature where the numbers make sense

Add two 1-place decimal numbers or two 2-place decimal numbers
less than 1 e.g. $4.5+6.3$ or e.g. $0.74+0.33$
Add positive numbers to negative numbers
e.g. Calculate a rise in temperature

Use number bonds to 100 to perform mental subtraction of any pair of integers by complementary addition
e.g. 1000-654 as $46+300$ in our heads

Use number bonds to 1 and 10 to perform mental subtraction of any pair of 1-place or 2-place decimal numbers using complementary addition and including money e.g. $10-3.65$ as $0.35+6$
Use number facts and place value to perform mental subtraction of large numbers or decimal numbers with up to 2 places
e.g. 467900-3005 or 4.63-1.02

Subtract multiples of powers of 10 and near multiples of the same Subtract negative numbers in a context such as temperature where the numbers make sense
number facts makes the calculation do able mentaly
Written calculation

Use column addition to add numbers with up to 5 digits
Use column addition to add decimal numbers with up to 3 decimal places Add mixed numbers and fractions with different denominators

Use column subtraction to subtract numbers with up to 6 digits
Use complementary addition for subtractions where the larger number is a multiple or near multiple of 1000 or 10000
Use complementary addition for subtractions of decimal numbers with up to 3 places, including money
Subtract mixed numbers and fractions with different denominators

## Default for ALL children

Derive, swiftly and without difficulty, number bonds to 100
Use place value and number facts to add 'friendly' large or decimal numbers

$$
\begin{aligned}
& \text { e.g. } 3 \cdot 4+6 \cdot 6 \\
& \text { e.g. } 26000+54000
\end{aligned}
$$

Use column addition to add numbers with up to 4-digits
Use column addition to add pairs of 2-place decimal numbers

Use number bonds to 100 to perform mental subtraction of numbers up to 1000 by complementary addition
e.g. 1000-654 as $46+300$ in our heads

Use complementary addition for subtraction of integers up to 10000
e.g. 2504-1878

Use complementary addition for subtractions of 1-place decimal numbers and amounts of money
e.g. £7•30-£3.55

Know by heart all the multiplication facts up to $12 \times 12$
Multiply whole numbers and decimals with up to 3 places by 10, 100 or 1000 e.g. $234 \times 1000=234000$ or $0.23 \times 1000=230$
Identify common factors, common multiples and prime numbers, use factors in mental multiplication e.g. $326 \times 6$ is $652 \times 3$ which is 1956 Use place value and number facts in mental multiplication

$$
\text { e.g. } 4000 \times 6=24000 \text { or } 0.03 \times 6=0.18
$$

Use doubling and halving as mental multiplication strategies, including to multiply by $2,4,8,5,20,50$ and 25
e.g. $28 \times 25$ is a quarter of $28 \times 100=700$

Use rounding in mental multiplication e.g. $34 \times 19$ as $(34 \times 20)-34$
Multiply 1- and 2 -place decimals by numbers up to and including 10 using place value and partitioning
e.g. $3.6 \times 4$ is $12+2.4$ or $2.53 \times 3$ is $6+1.5+0.09$

Double decimal numbers with up to 2 places using partitioning
e.g. 36.73 doubled is double 36 (72) plus double 0.73 (1.46)

Know by heart all the division facts up to $144 \div 12$
Divide whole numbers by powers of 10 to give whole number answers or answers with up to 3 decimal places
Identify common factors, common multiples and primes numbers and use factors in mental division e.g. $438 \div 6$ is $219 \div 3$ which is 73
Use tests for divisibility to aid mental calculation
Use doubling and halving as mental division strategies, for example to divide by 2, 4, 8, 5, 20 and 25
e.g. $628 \div 8$ is halved three times: $314,157,78.5$

Divide 1-and 2-place decimals by numbers up to and including 10 using place value e.g. $2.4 \div 6=0.4$ or $0.65 \div 5=0.13$
Halve decimal numbers with up to 2 places using partitioning
e.g. Half of 36.86 is half of 36 (18) plus half of $0.86(0.43)$

Know and use equivalence between simple fractions, decimals and percentages, including in different contexts
Recognise a given ratio and reduce a given ratio to its lowest terms

Use short multiplication to multiply a 1 digit number by a number with up to 4 digits
Use long multiplication to multiply a 2digit number by a number with up to 4 digits
Use short multiplication to multiply a 1 digit number by a number with 1 or 2 decimal places, including amounts of money
Multiply fractions and mixed numbers by whole numbers
Multiply fractions by proper fractions
Use percentages for comparison and calculate simple percentages

Use short division to divide a number with up to 4 digits by a 1 -digit or a 2-digit number
Use long division to divide 3-digit and 4digit numbers by 'friendly' 2-digit numbers
Give remainders as whole numbers or as fractions or as decimals
Divide a 1-place or a 2-place decimal number by a number $\leq 12$ using multiples of the divisors
Divide proper fractions by whole numbers

Know by heart all the multiplication facts up to $12 \times 12$
Multiply whole numbers and 1- and 2-place decimals by 10,100 and 1000
Use an efficient written method to multiply a 1-digit or a teen number by a number with up to 4 digits by partitioning (grid method)
Multiply a 1-place decimal number up to 10 by a number $\leq 100$ using the grid method

Know by heart all the division facts up to $144 \div 12$

Divide whole numbers by $10,100,1000$ to give whole number answers or answers with up to 2 decimal places
Use an efficient written method, involving subtracting powers of 10 times the divisor, to divide any number of up to 1000 by a number $\leq 12$
e.g. $836 \div 11$ as $836-770(70 \times 11)$
leaving 66 which is $6 \times 11$, giving the answer 76
Divide a 1-place decimal by a number $\leq 10$ using place value and knowledge of division facts

